## Inference to the best explanation of the evidence

The *p* value and Bayesian methods have well known drawbacks when it comes to measuring the strength of the evidence supporting one hypothesis over another. To overcome those drawbacks, this paper proposes an alternative method of quantifying how much support a hypothesis has from evidence consisting of data.

D. R. Bickel, “The strength of statistical evidence for composite hypotheses: Inference to the best explanation,” *Statistica Sinica* **22**, 1147-1198 (2012). Full article | 2010 version

The special law of likelihood has many advantages over more commonly used approaches to measuring the strength of statistical evidence. However, it only can measure the support of a hypothesis that corresponds to a single distribution. The proposed general law of likelihood also can measure the extent to which the data support a hypothesis that corresponds to multiple distributions. That is accomplished by formalizing inference to the best explanation.

## Extending the likelihood paradigm

D. R. Bickel, “The strength of statistical evidence for composite hypotheses: Inference to the best explanation,” *Statistica Sinica* **22**, 1147-1198 (2012). Full article | 2010 version

## Effect-size estimates from hypothesis probabilities

D. R. Bickel, “Empirical Bayes interval estimates that are conditionally equal to unadjusted confidence intervals or to default prior credibility intervals,” *Statistical Applications in Genetics and Molecular Biology* **11** (3), art. 7 (2012). Full article | 2010 preprint

The method contributed in this paper adjusts confidence intervals in multiple-comparison problems according to the estimated local false discovery rate. This shrinkage method performs substantially better than standard confidence intervals under the independence of the data across comparisons. A special case of the confidence intervals is the posterior median, which provides an improved method of ranking biological features such as genes, proteins, or genetic variants. The resulting ranks of features lead to better prioritization of which features to investigate further.