Archive
Inference to the best explanation of the evidence
The p value and Bayesian methods have well known drawbacks when it comes to measuring the strength of the evidence supporting one hypothesis over another. To overcome those drawbacks, this paper proposes an alternative method of quantifying how much support a hypothesis has from evidence consisting of data.
D. R. Bickel, “The strength of statistical evidence for composite hypotheses: Inference to the best explanation,” Statistica Sinica 22, 1147-1198 (2012). Full article | 2010 version
The special law of likelihood has many advantages over more commonly used approaches to measuring the strength of statistical evidence. However, it only can measure the support of a hypothesis that corresponds to a single distribution. The proposed general law of likelihood also can measure the extent to which the data support a hypothesis that corresponds to multiple distributions. That is accomplished by formalizing inference to the best explanation.
Extending the likelihood paradigm
D. R. Bickel, “The strength of statistical evidence for composite hypotheses: Inference to the best explanation,” Statistica Sinica 22, 1147-1198 (2012). Full article | 2010 version
Effect-size estimates from hypothesis probabilities
D. R. Bickel, “Empirical Bayes interval estimates that are conditionally equal to unadjusted confidence intervals or to default prior credibility intervals,” Statistical Applications in Genetics and Molecular Biology 11 (3), art. 7 (2012). Full article | 2010 preprint
The method contributed in this paper adjusts confidence intervals in multiple-comparison problems according to the estimated local false discovery rate. This shrinkage method performs substantially better than standard confidence intervals under the independence of the data across comparisons. A special case of the confidence intervals is the posterior median, which provides an improved method of ranking biological features such as genes, proteins, or genetic variants. The resulting ranks of features lead to better prioritization of which features to investigate further.
Software for local false discovery rate estimation
LFDR-MLE is a suite of R functions for the estimation of local false discovery rates by maximum likelihood under a two-group parametric mixture model of test statistics.
Observed confidence levels for microarrays, etc.
D. R. Bickel, “Estimating the null distribution to adjust observed confidence levels for genome-scale screening,” Biometrics 67, 363-370 (2011). Abstract and article | French abstract | Supplementary material | Simple explanation
This paper describes the first application of observed confidence levels to data of high-dimensional biology. The proposed method for multiple comparisons can take advantage of the estimated null distribution without any prior distribution. The new method is applied to microarray data to illustrate its advantages.
Confidence intervals for semi-parametric empirical Bayes
D. R. Bickel, “Large-scale interval and point estimates from an empirical Bayes extension of confidence posteriors,” Technical Report, Ottawa Institute of Systems Biology, arXiv:1012.6033 (2010). Full preprint
To address multiple comparison problems in high-dimensional biology, this paper introduces shrunken point estimates for feature prioritization and shrunken confidence intervals to indicate the uncertainty of the point estimates. The new point and interval estimates are applied to gene expression data and are found to be conservative by simulation, as expected from limiting cases. Unlike the parametric empirical Bayes estimates, the new estimates are compatible with the semi-parametric approach to local false discovery rate estimation that has been extensively developed and applied over the last decade. This is carried out by replacing strong parametric assumptions with the confidence posterior theory of papers in the presses of Biometrics and Communications in Statistics — Theory and Methods.
You must be logged in to post a comment.