Inference to the best explanation of the evidence
The p value and Bayesian methods have well known drawbacks when it comes to measuring the strength of the evidence supporting one hypothesis over another. To overcome those drawbacks, this paper proposes an alternative method of quantifying how much support a hypothesis has from evidence consisting of data.
D. R. Bickel, “The strength of statistical evidence for composite hypotheses: Inference to the best explanation,” Statistica Sinica 22, 1147-1198 (2012). Full article | 2010 version
The special law of likelihood has many advantages over more commonly used approaches to measuring the strength of statistical evidence. However, it only can measure the support of a hypothesis that corresponds to a single distribution. The proposed general law of likelihood also can measure the extent to which the data support a hypothesis that corresponds to multiple distributions. That is accomplished by formalizing inference to the best explanation.
The general law of likelihood, as a method of inference, differs from measures of evidence that quantify changes in probability. For example, the Bayes factor is the posterior odds divided by the prior odds.
You must be logged in to post a comment.