Archive

Archive for the ‘fiducial inference’ Category

Lower the statistical significance threshold to 0.005—or 0.001?

1 October 2018 Leave a comment

Pre-data insights update priors via Bayes’s theorem

1 September 2018 Leave a comment

How to adjust statistical inferences for the simplicity of distributions

1 August 2018 Leave a comment

Uncertainty propagation for empirical Bayes interval estimates: A fiducial approach

1 December 2017 Leave a comment

D. R. Bickel, “Confidence distributions applied to propagating uncertainty to inference based on estimating the local false discovery rate: A fiducial continuum from confidence sets to empirical Bayes set estimates as the number of comparisons increases,” Communications in Statistics – Theory and Methods 46, 10788-10799 (2017). Published article | Free access (limited time)2014 preprint

Publication Cover

Two problems confronting the eclectic approach to statistics result from its lack of a unifying theoretical foundation. First, there is typically no continuity between a p-value reported as a level of evidence for a hypothesis in the absence of the information needed to estimate a relevant prior on one hand and an estimated posterior probability of a hypothesis reported in the presence of such information on the other hand. Second, the empirical Bayes methods recommended do not propagate the uncertainty due to estimating the prior.

The latter problem is addressed by applying a coherent form of fiducial inference to hierarchical models, yielding empirical Bayes set estimates that reflect uncertainty in estimating the prior. Plugging in the maximum likelihood estimator, while not propagating that uncertainty, provides continuity from single comparisons to large numbers of comparisons.

The generalized fiducial distribution: A kinder, more objective posterior?

1 June 2017 Leave a comment

MR3561954

Hannig, JanIyer, HariLai, Randy C. S.Lee, Thomas C. M.
Generalized fiducial inference: a review and new results. (English summary)
J. Amer. Statist. Assoc. 111 (2016), no. 515, 1346–1361.
62A01 (62F99 62G05 62J05)
This review article introduces generalized fiducial inference, the flavor of fiducial statistics developed by the authors and their collaborators since the beginning of the millennium. This research program has been driven by a vision of fiducial distributions as posterior distributions untainted by the subjectivity seen in prior distributions.
Other approaches to fiducial inference bring subjectivity more to the forefront. For example, G. N. Wilkinson had highlighted the incoherence of fiducial distributions formulated in a more Fisherian flavor [J. Roy. Statist. Soc. Ser. B 39 (1977), no. 2, 119–171; MR0652326]. More recently, R. J. Bowater [AStA Adv. Stat. Anal. 101 (2017), no. 2, 177–197] endorsed an explicitly subjective interpretation of fiducial probability. For the place of generalized fiducial inference in the context of other fiducial approaches, see [D. L. Sonderegger and J. Hannig, in Contemporary developments in statistical theory, 155–189, Springer Proc. Math. Stat., 68, Springer, Cham, 2014; MR3149921] and the papers it {MR3149921} cites.
In addition to providing an inspiring exposition of generalized fiducial inference, the authors report these new contributions:
  1. A weak-limit definition of a generalized fiducial distribution.
  2. Sufficient conditions for a generalized fiducial distribution to have asymptotic frequentist coverage.
  3. Novel formulas for computing a generalized fiducial distribution and a fiducial probability of a model.

The fiducial probability of a model is applicable to both model selection and model averaging. A seemingly different fiducial method of averaging statistical models was independently proposed by D. R. Bickel [“A note on fiducial model averaging as an alternative to checking Bayesian and frequentist models”, preprint, Fac. Sci. Math. Stat., Univ. Ottawa, 2015].

Reviewed by David R. Bickel

Read more…

Empirical Bayes single-comparison procedure

1 July 2016 Leave a comment

D. R. Bickel, “Small-scale inference: Empirical Bayes and confidence methods for as few as a single comparison,” International Statistical Review 82, 457-476 (2014). Published version2011 preprint | Simple explanation (link added 21 June 2017)

Parametric empirical Bayes methods of estimating the local false discovery rate by maximum likelihood apply not only to the large-scale settings for which they were developed, but, with a simple modification, also to small numbers of comparisons. In fact, data for a single comparison are sufficient under broad conditions, as seen from applications to measurements of the abundance levels of 20 proteins and from simulation studies with confidence-based inference as the competitor.

Coherent inference after checking a prior

7 January 2016 Leave a comment