## Empirical Bayes single-comparison procedure

D. R. Bickel, “Small-scale inference: Empirical Bayes and confidence methods for as few as a single comparison,” *International Statistical Review ***82**, 457-476 (2014). Published version | 2011 preprint | Simple explanation (link added 21 June 2017)

Parametric empirical Bayes methods of estimating the local false discovery rate by maximum likelihood apply not only to the large-scale settings for which they were developed, but, with a simple modification, also to small numbers of comparisons. In fact, data for a single comparison are sufficient under broad conditions, as seen from applications to measurements of the abundance levels of 20 proteins and from simulation studies with confidence-based inference as the competitor.

## Coherent inference after checking a prior

D. R. Bickel, “Bayesian revision of a prior given prior-data conflict, expert opinion, or a similar insight: A large-deviation approach,” Working Paper, University of Ottawa, deposited in uO Research at http://hdl.handle.net/10393/34089/ (2015). 2015 preprint

## Fiducial nonparametrics

Sonderegger, Derek L.; Hannig, Jan

Fiducial theory for free-knot splines. Contemporary developments in statistical theory, 155–189,

Springer Proc. Math. Stat., 68, Springer, Cham, 2014.

62F12 (62F10 62F99 65D07)

The research reported reflects the recent surge in developments of Fisher’s fiducial argument [S. Nadarajah, S. Bityukov and N. Krasnikov, Stat. Methodol. 22 (2015), 23–46; MR3261595]. The work of this chapter is carried out within the framework of generalized fiducial inference [J. Hannig, Statist. Sinica 19 (2009), no. 2, 491–544; MR2514173 (2010h:62071)], which is built on the functional-model formulation of fiducial statistics [A. P. Dawid, M. Stone and M. Stone, Ann. Statist. 10 (1982), no. 4, 1054–1074; MR0673643 (83m:62008)] rather than on the broadly equivalent confidence-based tradition beginning with [G. N. Wilkinson, J. Roy. Statist. Soc. Ser. B 39 (1977), no. 2, 119–171; MR0652326 (58 #31491)] and generalized by [E. E. M. van Berkum, H. N. Linssen and D. Overdijk, J. Statist. Plann. Inference 49 (1996), no. 3, 305–317; MR1381161 (97k:62007)].

{For the entire collection see MR3149911.}

Reviewed by David R. Bickel

This review first appeared at “Fiducial theory for free-knot splines” (Mathematical Reviews) and is used with permission from the American Mathematical Society.

## Fiducial model averages from model checks

D. R. Bickel, “A note on fiducial model averaging as an alternative to checking Bayesian and frequentist models,” Working Paper, University of Ottawa, deposited in uO Research at http://hdl.handle.net/10393/32313 (2015). 2015 preprint

## Erratum: “Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions”

**Main entry:** Small dimensional empirical Bayes inference

## Small-scale empirical Bayes & fiducial estimators

M. Padilla and D. R. Bickel, “Empirical Bayes and fiducial effect-size estimation for small numbers of tests,” Working Paper, University of Ottawa, deposited in uO Research at http://hdl.handle.net/10393/32151 (2015). 2015 preprint