## Uncertainty propagation for empirical Bayes interval estimates: A fiducial approach

D. R. Bickel, “Confidence distributions applied to propagating uncertainty to inference based on estimating the local false discovery rate: A fiducial continuum from confidence sets to empirical Bayes set estimates as the number of comparisons increases,” *Communications in Statistics – Theory and Methods* **46**, 10788-10799 (2017). Published article | Free access (limited time) | 2014 preprint

Two problems confronting the eclectic approach to statistics result from its lack of a unifying theoretical foundation. First, there is typically no continuity between a p-value reported as a level of evidence for a hypothesis in the absence of the information needed to estimate a relevant prior on one hand and an estimated posterior probability of a hypothesis reported in the presence of such information on the other hand. Second, the empirical Bayes methods recommended do not propagate the uncertainty due to estimating the prior.

The latter problem is addressed by applying a coherent form of fiducial inference to hierarchical models, yielding empirical Bayes set estimates that reflect uncertainty in estimating the prior. Plugging in the maximum likelihood estimator, while not propagating that uncertainty, provides continuity from single comparisons to large numbers of comparisons.

## Empirical Bayes single-comparison procedure

D. R. Bickel, “Small-scale inference: Empirical Bayes and confidence methods for as few as a single comparison,” *International Statistical Review ***82**, 457-476 (2014). Published version | 2011 preprint | Simple explanation (link added 21 June 2017)

Parametric empirical Bayes methods of estimating the local false discovery rate by maximum likelihood apply not only to the large-scale settings for which they were developed, but, with a simple modification, also to small numbers of comparisons. In fact, data for a single comparison are sufficient under broad conditions, as seen from applications to measurements of the abundance levels of 20 proteins and from simulation studies with confidence-based inference as the competitor.

## Erratum: “Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions”

**Main entry:** Small dimensional empirical Bayes inference

## Coherent fiducial distributions

D. R. Bickel and M. Padilla, “A prior-free framework of coherent inference and its derivation of simple shrinkage estimators,” *Journal of Statistical Planning and Inference* **145**, 204–221 (2014). 2012 version

## Small dimensional empirical Bayes inference

D. R. Bickel, “Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions,” *Statistical Applications in Genetics and Molecular Biology* **12**, 529–543 (2013). 2011 version | erratum

To address multiple comparison problems in small-to-high-dimensional biology, this paper introduces estimators of the local false discovery rate (LFDR), reports their main properties, and illustrates their use with proteomics data. The new estimators have the following advantages:

- proven asymptotic conservatism;
- simplicity of calculation without the tuning of smoothing parameters;
- no strong parametric assumptions;
- applicability to very small numbers of hypotheses as well as to very large numbers of hypotheses.

The link to the erratum was added 31 March 2015.