D. R. Bickel, “The strength of statistical evidence for composite hypotheses: Inference to the best explanation,” *Statistica Sinica* **22**, 1147-1198 (2012). Full article | 2010 version

The special law of likelihood has many advantages over more commonly used approaches to measuring the strength of statistical evidence. However, it only can measure the support of a hypothesis that corresponds to a single distribution. The proposed general law of likelihood also can measure the extent to which the data support a hypothesis that corresponds to multiple distributions. That is accomplished by formalizing inference to the best explanation.

The general law of likelihood, as a method of inference, differs from measures of evidence that quantify changes in probability. For example, the Bayes factor is the posterior odds divided by the prior odds.

]]>Two problems confronting the eclectic approach to statistics result from its lack of a unifying theoretical foundation. First, there is typically no continuity between a p-value reported as a level of evidence for a hypothesis in the absence of the information needed to estimate a relevant prior on one hand and an estimated posterior probability of a hypothesis reported in the presence of such information on the other hand. Second, the empirical Bayes methods recommended do not propagate the uncertainty due to estimating the prior.

The latter problem is addressed by applying a coherent form of fiducial inference to hierarchical models, yielding empirical Bayes set estimates that reflect uncertainty in estimating the prior. Plugging in the maximum likelihood estimator, while not propagating that uncertainty, provides continuity from single comparisons to large numbers of comparisons.

]]>10th Workshop on Information Theoretic Methods in Science and Engineering

Paris, France

September 11, 2017

David R. Bickel

University of Ottawa

]]>the goal [of statistical inference in science] is not to infer highly probable claims (in the formal sense)* but claims which have been highly probed and have passed severe probes

Source: Deborah G. Mayo’s Performance or Probativeness? E.S. Pearson’s Statistical Philosophy | Error Statistics Philosophy

]]>This is a list of possibly predatory publishers. The kernel for this list was extracted from the archive of Beall’s List at web.archive.org. It will be updated as new information or suggested edits are submitted or found by the maintainers of this site.

Source: List of Predatory Publishers | Stop Predatory Journals (accessed 24 August 2017)

]]>Each student will work toward an MSc degree in the Mathematics and Statistics Program at the University of Ottawa. MSc students have the additional option of choosing a Bioinformatics or Biostatistics Specialization. Financial support is available.

Intellectual curiosity and high mathematical aptitude are essential, as is the ability to quickly code and debug computer programs. Strong self motivation and good communication skills are also absolutely necessary. The following qualities are desirable but not required: coursework in bioinformatics, computer science, numerical methods, numerical analysis, software engineering, statistics, and/or biology; familiarly with R, S-PLUS, Stan, JAGS, Mathematica, C, Fortran, and/or LaTeX; experience with UNIX or Linux.

Canadians (by citizenship or permanent residency) are especially encouraged to apply, as are all exceptional students. To be considered, send a PDF CV that has your GPA and contact information of two references to dbickel@uOttawa.ca with a cover letter in the body of the message. Please indicate in the subject line of the message your immigration status (“Canadian citizen,” “Canadian PR,” or “visa”) and, optionally, a specialization (“Bioinformatics” or “Biostatistics”). Only those selected for further consideration will receive a response.

]]>DRB:

]]>Sometimes. A subjective Bayesian encountering completely unexpected data changes the prior:In the philosophy literature, that has been compared to changing the premises of a deductive argument. It has been argued that just as one may revise a premise without abandoning deductive logic as a tool, one may revise a prior without abandoning Bayesian updating as a tool.

“Correcting false discovery rates for their bias toward false positives”

]]>