Archive

Archive for the ‘Contributions’ Category

Pre-data insights update priors via Bayes’s theorem

1 September 2018 Leave a comment

How to adjust statistical inferences for the simplicity of distributions

1 August 2018 Leave a comment

An idealized Cromwell’s rule

1 June 2018 Leave a comment

Cromwell’s principle idealized under the theory of large deviations

Seminar, Statistics and Probability Research Group, University of Ottawa

Ottawa, Ontario

April 27, 2018

David R. Bickel

University of Ottawa

Abstract. Cromwell’s principle requires that the prior probability that one’s assumptions are incorrect is greater than 0. That is relevant to Bayesian model checking since diagnostics often reveal that prior distributions require revision, which would be impossible under Bayes’s theorem if those priors were 100% probable. The idealized Cromwell’s principle makes the probability of making incorrect assumptions arbitrarily small. Enforcing that principle under large deviations theory leads to revising Bayesian models by maximum entropy in wide generality.

An R package to transform false discovery rates to posterior probability estimates

1 May 2018 Leave a comment

There are many estimators of false discovery rate. In this package we compute the Nonlocal False Discovery Rate (NFDR) and the estimators of local false discovery rate: Corrected False discovery Rate (CFDR), Re-ranked False Discovery rate (RFDR) and the blended estimator.

Source: CRAN – Package CorrectedFDR

LFDR.MLE-package function | R Documentation

1 March 2018 Leave a comment
Categories: empirical Bayes, software

Inference to the best explanation of the evidence

1 February 2018 Leave a comment

The p value and Bayesian methods have well known drawbacks when it comes to measuring the strength of the evidence supporting one hypothesis over another. To overcome those drawbacks, this paper proposes an alternative method of quantifying how much support a hypothesis has from evidence consisting of data.

image

D. R. Bickel, “The strength of statistical evidence for composite hypotheses: Inference to the best explanation,” Statistica Sinica 22, 1147-1198 (2012). Full article2010 version

The special law of likelihood has many advantages over more commonly used approaches to measuring the strength of statistical evidence. However, it only can measure the support of a hypothesis that corresponds to a single distribution. The proposed general law of likelihood also can measure the extent to which the data support a hypothesis that corresponds to multiple distributions. That is accomplished by formalizing inference to the best explanation.

Read more…

How to make decisions using somewhat reliable posterior distributions

15 January 2018 Leave a comment
Categories: model checking, preprints

Uncertainty propagation for empirical Bayes interval estimates: A fiducial approach

1 December 2017 Leave a comment

D. R. Bickel, “Confidence distributions applied to propagating uncertainty to inference based on estimating the local false discovery rate: A fiducial continuum from confidence sets to empirical Bayes set estimates as the number of comparisons increases,” Communications in Statistics – Theory and Methods 46, 10788-10799 (2017). Published article | Free access (limited time)2014 preprint

Publication Cover

Two problems confronting the eclectic approach to statistics result from its lack of a unifying theoretical foundation. First, there is typically no continuity between a p-value reported as a level of evidence for a hypothesis in the absence of the information needed to estimate a relevant prior on one hand and an estimated posterior probability of a hypothesis reported in the presence of such information on the other hand. Second, the empirical Bayes methods recommended do not propagate the uncertainty due to estimating the prior.

The latter problem is addressed by applying a coherent form of fiducial inference to hierarchical models, yielding empirical Bayes set estimates that reflect uncertainty in estimating the prior. Plugging in the maximum likelihood estimator, while not propagating that uncertainty, provides continuity from single comparisons to large numbers of comparisons.

Inference after eliminating Bayesian models of excessive codelength

1 November 2017 Leave a comment

The generalized fiducial distribution: A kinder, more objective posterior?

1 June 2017 Leave a comment

MR3561954

Hannig, JanIyer, HariLai, Randy C. S.Lee, Thomas C. M.
Generalized fiducial inference: a review and new results. (English summary)
J. Amer. Statist. Assoc. 111 (2016), no. 515, 1346–1361.
62A01 (62F99 62G05 62J05)
This review article introduces generalized fiducial inference, the flavor of fiducial statistics developed by the authors and their collaborators since the beginning of the millennium. This research program has been driven by a vision of fiducial distributions as posterior distributions untainted by the subjectivity seen in prior distributions.
Other approaches to fiducial inference bring subjectivity more to the forefront. For example, G. N. Wilkinson had highlighted the incoherence of fiducial distributions formulated in a more Fisherian flavor [J. Roy. Statist. Soc. Ser. B 39 (1977), no. 2, 119–171; MR0652326]. More recently, R. J. Bowater [AStA Adv. Stat. Anal. 101 (2017), no. 2, 177–197] endorsed an explicitly subjective interpretation of fiducial probability. For the place of generalized fiducial inference in the context of other fiducial approaches, see [D. L. Sonderegger and J. Hannig, in Contemporary developments in statistical theory, 155–189, Springer Proc. Math. Stat., 68, Springer, Cham, 2014; MR3149921] and the papers it {MR3149921} cites.
In addition to providing an inspiring exposition of generalized fiducial inference, the authors report these new contributions:
  1. A weak-limit definition of a generalized fiducial distribution.
  2. Sufficient conditions for a generalized fiducial distribution to have asymptotic frequentist coverage.
  3. Novel formulas for computing a generalized fiducial distribution and a fiducial probability of a model.

The fiducial probability of a model is applicable to both model selection and model averaging. A seemingly different fiducial method of averaging statistical models was independently proposed by D. R. Bickel [“A note on fiducial model averaging as an alternative to checking Bayesian and frequentist models”, preprint, Fac. Sci. Math. Stat., Univ. Ottawa, 2015].

Reviewed by David R. Bickel

Read more…