Archive
Estimates of the local FDR
Z. Yang, Z. Li, and D. R. Bickel, “Empirical Bayes estimation of posterior probabilities of enrichment: A comparative study of five estimators of the local false discovery rate,” BMC Bioinformatics 14, art. 87 (2013). published version | 2011 version | 2010 version
This paper adapts novel empirical Bayes methods for the problem of detecting enrichment in the form of differential representation of genes associated with a biological category with respect to a list of genes identified as differentially expressed. Read more…
Optimal strength of evidence
D. R. Bickel, “Minimax-optimal strength of statistical evidence for a composite alternative hypothesis,” International Statistical Review 81, 188-206 (2013). 2011 version | Simple explanation (added 2 July 2017)
This publication generalizes the likelihood measure of evidential support for a hypothesis with the help of tools originally developed by information theorists for minimizing the number of letters in a message. The approach is illustrated with an application to proteomics data.
Local FDR estimation for low-dimensional data
M. Padilla and D. R. Bickel, “Estimators of the local false discovery rate designed for small numbers of tests,” Statistical Applications in Genetics and Molecular Biology 11 (5), art. 4 (2012). Full article | 2010 & 2012 preprints
Extending the likelihood paradigm
D. R. Bickel, “The strength of statistical evidence for composite hypotheses: Inference to the best explanation,” Statistica Sinica 22, 1147-1198 (2012). Full article | 2010 version
Estimating probabilities of enrichment
Z. Yang, Z. Li, and D. R. Bickel, “Empirical Bayes estimation of posterior probabilities of enrichment,” Technical Report, Ottawa Institute of Systems Biology, Technical Report, Ottawa Institute of Systems Biology, arXiv:1201.0153 (2011). Full preprint | 2010 seed
This paper adapts novel empirical Bayes methods for the problem of detecting enrichment in the form of differential representation of genes associated with a biological category with respect to a list of genes identified as differentially expressed. A microarray case study illustrates the methods using Gene Ontology (GO) terms, and a simulation study compares their performance. We report that which enrichment methods work best depends strongly on how many GO terms or other biological categories are of interest.
Minimax strength of statistical evidence
D. R. Bickel, “A predictive approach to measuring the strength of statistical evidence for single and multiple comparisons,” Canadian Journal of Statistics 39, 610–631 (2011). Full text | Revised preprint | 2010 draft

This paper introduces a novel approach to the multiple comparisons problem by generalizing a promising method of model selection developed by information theorists. The first two sections present that method and its main advantages over conventional approaches without burdening statisticians with unfamiliar terms from coding theory. A quantitative proteomics case study facilitates application of the new method to the analysis of data sets involving multiple biological features. The theorems describe its operating characteristics.
The cited medium-scale paper presented previous minimum description length (MDL) methods. Unlike those methods, the new MDL methods of the current paper are based on a conflation of the normalized maximum likelihood (NML) with the weighted likelihood (WL). The previous MDL methods are used in the CJS article for comparison with its NML/WL methods.
Unknown Bayes factor approximation
D. R. Bickel, “Measuring support for a hypothesis about a random parameter without estimating its unknown prior,” Technical Report, Ottawa Institute of Systems Biology, arXiv:1101.0305 (2011). Full preprint
Quantifying evidence for enrichment
Z. Yang and D. R. Bickel, “Minimum description length measures of evidence for enrichment,” Technical Report, Ottawa Institute of Systems Biology, COBRA Preprint Series, Article 76, available at biostats.bepress.com/cobra/ps/art76 (2010). Full preprint
Quantifying evidence for genetic association
Y. Yang and D. R. Bickel, “Minimum description length and empirical Bayes methods of identifying SNPs associated with disease,” Technical Report, Ottawa Institute of Systems Biology, COBRA Preprint Series, Article 74, available at biostats.bepress.com/cobra/ps/art74 (2010).
This manuscript adapts two new evidential, information-theoretic methods to the problem of detecting SNPs associated with disease on the basis of genome-wide association data. Both an application to coronary artery disease and an extensive set of simulation studies indicate that these parametric methods tend to be more reliable than a popular semi-parametric approach to estimating local false discovery rates. In addition, the paper reports that one of the two novel methods performs better than the other.
The abstract and the discussion section of the preprint provide more detailed summaries.



You must be logged in to post a comment.